3.17.44 \(\int \frac {d+e x}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=50 \[ -\frac {2 (d+e x)}{\left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 50, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {636} \begin {gather*} -\frac {2 (d+e x)}{\left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*(d + e*x))/((c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 636

Int[((d_.) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-2*(b*d - 2*a*e + (2*c*
d - b*e)*x))/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] &&
NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=-\frac {2 (d+e x)}{\left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 39, normalized size = 0.78 \begin {gather*} -\frac {2 (d+e x)}{\left (c d^2-a e^2\right ) \sqrt {(d+e x) (a e+c d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*(d + e*x))/((c*d^2 - a*e^2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.45, size = 55, normalized size = 1.10 \begin {gather*} -\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\left (c d^2-a e^2\right ) (a e+c d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/((c*d^2 - a*e^2)*(a*e + c*d*x))

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 65, normalized size = 1.30 \begin {gather*} -\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{a c d^{2} e - a^{2} e^{3} + {\left (c^{2} d^{3} - a c d e^{2}\right )} x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

-2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(a*c*d^2*e - a^2*e^3 + (c^2*d^3 - a*c*d*e^2)*x)

________________________________________________________________________________________

giac [B]  time = 0.52, size = 109, normalized size = 2.18 \begin {gather*} -\frac {2 \, {\left (\frac {{\left (c d^{2} e - a e^{3}\right )} x}{c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}} + \frac {c d^{3} - a d e^{2}}{c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}\right )}}{\sqrt {c d x^{2} e + a d e + {\left (c d^{2} + a e^{2}\right )} x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

-2*((c*d^2*e - a*e^3)*x/(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4) + (c*d^3 - a*d*e^2)/(c^2*d^4 - 2*a*c*d^2*e^2 + a^2
*e^4))/sqrt(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 58, normalized size = 1.16 \begin {gather*} \frac {2 \left (c d x +a e \right ) \left (e x +d \right )^{2}}{\left (a \,e^{2}-c \,d^{2}\right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2),x)

[Out]

2*(c*d*x+a*e)*(e*x+d)^2/(a*e^2-c*d^2)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?`
 for more details)Is a*e^2-c*d^2 zero or nonzero?

________________________________________________________________________________________

mupad [B]  time = 0.76, size = 53, normalized size = 1.06 \begin {gather*} \frac {2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\left (a\,e+c\,d\,x\right )\,\left (a\,e^2-c\,d^2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2),x)

[Out]

(2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/((a*e + c*d*x)*(a*e^2 - c*d^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {d + e x}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral((d + e*x)/((d + e*x)*(a*e + c*d*x))**(3/2), x)

________________________________________________________________________________________